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A numerical model for a three-dimensional heat and fluid flow through a bank of
infinitely long cylinders in yaw has been proposed to investigate complex flow and heat
transfer characteristics associated with manmade structures such as extended fins and
plate fins in heat transfer equipment. By exploiting the periodicity of the structure, only
one structural unit has been taken as a calculation domain. An economical quasi-
three-dimensional calculation procedure has been proposed to replace exhaustive
full three-dimensional numerical manipulations. It has been shown that, under
macroscopically uniform flow, the three-dimensional governing equations reduce to
quasi-three-dimensional forms, in which all derivatives associated with the axis of the
cylinder can be either eliminated or replaced by other determinable expressions.
Thus, only two-dimensional storage is required for the dependent variables in
question. Extensive numerical calculations were carried out for various sets of the
porosity, degree of anisotropy, Reynolds number and macroscopic flow direction
in a three-dimensional space. The numerical results thus obtained for periodically
fully developed flow and temperature fields were integrated over a structural unit to
determine the permeability tensor, Forchheimer tensor and directional interfacial heat
transfer coefficient, to elucidate the effects of yaw angle on these macroscopic flow
and heat transfer characteristics. Upon examining these numerical data, a useful set
of explicit expressions has been established for the permeability tensor, Forchheimer
tensor and directional interfacial heat transfer coefficient to characterize flow and
heat transfer through a bank of cylinders in yaw.

1. Introduction
A number of workers, including Grimson (1937, 1938), Omohundro, Bergelin &

Colburn (1949), Bergelin et al. (1950), Bergelin, Brown & Doberstein (1952) and
Zukauskas (1987), have carried out extensive experimental investigations for heat
transfer from a bundle of tubes in crossflow, and provided useful experimental
data and correlations for designing crossflow heat exchangers. In designing such
heat exchangers, the correlations for the pressure drop and interfacial heat transfer
coefficient, as functions of the macroscopic velocity vector (i.e. its magnitude and
direction in reference to the axis of the tube) and other structural parameters, are
required.

Detailed flow and temperature fields within a heat exchanger assembly may be
investigated by numerically solving the set of governing equations based on first
principles, so as to resolve all scales of flow and heat transfer in the system.
However, in reality, it would be impossible to resolve such details, even with the most
powerful super-computer available today. A grid system, designed for a comparatively
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large-scale heat exchanger system, would not be fine enough to describe the details
of flow and heat transfer around a fin in a heat transfer element. Thus, heat
exchangers are usually designed following semi-empirical procedures based on simple
heat-balance relationships and analytical models designed for possible heat transfer
elements, as comprehensively reviewed by Shah & London (1978) and Kays & London
(1984).

Since the initiative attempts made by Hubbert (1956), Slattery (1967) and Whitaker
(1967) to derive macroscopic laws from microscopic principles of fluid dynamics,
considerable efforts have been directed towards establishing general macroscopic
equations for flows in porous media. This concept of local volume-averaging theory
(VAT), widely used in the study of porous media (e.g. Cheng 1978; Vafai & Tien
1981; Quintard & Whitaker 1993; Nakayama 1995) may be exploited to investigate
the flow and heat transfer within complex heat and fluid flow equipment consisting
of small-scale elements, such as a bundle of tubes and fins, which we do not want
to represent by a grid. For example, the hot and cold fluid passages in a compact
heat exchanger can be treated as two distinct porous media with highly anisotropic
permeabilities. Also, we need a certain macroscopic model for estimating the pressure
drop, when we perform Computational fluid dynamics (CFD) calculations of engine
nacelles to account for bundles of hydraulic tubes, ribs and some other obstructions
(DesJardin, personal communication 2001). There are a number of other situations
in which we have to introduce macroscopic models to describe complex flow and heat
transfer systems.

Nakayama & Kuwahara (1999) derived a set of macroscopic governing equations
for turbulent heat and fluid flow through an isotropic porous medium in local thermal
equilibrium, while the set of governing equations based on the two-energy equation
model for laminar flow through a non-thermal equilibrium isotropic porous medium
was obtained by Nakayama, Kuwahara & Xu (2001), by integrating the microscopic
governing equations, namely, the continuity equation, the Navier–Stokes equation
and the energy equation. We can use these macroscopic equations to investigate the
flow and heat transfer within complex equipment consisting of small-scale elements.
According to Nakayama et al. (2001, 2002a), the set of macroscopic equations based
on the volume-averaging theory for the case of laminar flow through an anisotropic
porous medium is
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in general denotes the intrinsic averaged value of a over the volume space Vf occupied
by the fluid within a local control volume V , where the subscript f stands for the
fluid phase. Moreover, the interfacial heat transfer coefficient is defined by

hf ≡

1

V

∫
Aint

kf

∂T

∂xj

nj dA

(〈T 〉s − 〈T 〉f
)

, (5)

where nj is the unit vector normal to the interface pointing from the fluid side to
the solid side. The net heat transfer between the fluid and the solid is given by
hf af (〈T 〉f − 〈T 〉s) where af is the specific interfacial area (i.e. interfacial area per
unit volume).

This single set of the volume-averaged governing equations may be applied to the
entire calculation domain within the complex heat transfer equipment consisting of
small-scale elements, as we specify the spatial distributions of the porosity φ = Vf /V

and permeability, such that the clear fluid flow region without small-scale obstructions
may be treated as a special case by setting φ = 1 and infinitely large permeability.
However, in order to use these macroscopic equations for such numerical analyses, we
must close the equations by modelling the flow resistance (i.e. Kij and bij) associated
with individual subscale solid elements and also the heat transfer rate (i.e. hf ) between
the flowing fluid and the subscale elements, in terms of the local velocity vector and
relevant geometrical parameters.

The microscopic numerical results obtained at a pore scale can be processed
to extract the macroscopic hydrodynamic and thermal characteristics in terms of
the volume-averaged quantities. A great deal of effort has been directed towards
this endeavour (Kuwahara, Nakayama & Koyama 1994; Nakayama & Kuwahara
1999, 2000; De Lemos & Pedras 2001; Pedras & De Lemos 2001). The unknown
model parameters including the interfacial heat transfer coefficient, permeability
and Forchheimer constants were determined by carrying out exhaustive numerical
experiments using a periodic array of square rods and then integrating these
microscopic results over a unit porous structure (Nakayama & Kuwahara 1999;
Kuwahara, Shirota & Nakayama 2001). Nakayama et al. (2002b) proposed a bundle
of rectangular cylinders to describe anisotropic porous media, and determined the
permeability tensor, inertial (i.e. Forchheimer) tensor and interfacial heat transfer
coefficient as functions of the macroscopic velocity vector and structural parameters.
All these previous investigations, however, are limited to the cases of the crossflows
over two-dimensional structures. In reality, all manmade elements such as those in
plate fin heat exchangers are of a three-dimensional nature. Naturally, the macroscopic
velocity vector is not always perpendicular to the axis of the cylinder. Thus, the three-
dimensional yaw effects on the permeability tensor, inertial tensor and interfacial
heat transfer coefficient must be elucidated beforehand, in order to design such heat
transfer elements and systems.

Our literature survey has revealed that no explicit periodic thermal boundary
conditions have been reported for the case of three-periodic boundaries in a three-
dimensional space. In this paper, it will be shown that, under macroscopically
uniform flow, the three-dimensional governing equations reduce to quasi-three-
dimensional forms, in which all derivatives associated with the axis of the cylinder
can be either eliminated or replaced by other determinable expressions. Thus, only
two-dimensional storage is required for the dependent variables. This quasi-three-
dimensional numerical calculation procedure will be exploited to investigate the
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Figure 1. Coordinate system.

three-dimensional effects on the permeability tensor, inertial tensor and directional
interfacial heat transfer coefficient, which are required to close the proposed set of
macroscopic governing equations, and thus, expected to serve as fundamental data
for designing certain heat transfer elements.

In what follows, we shall first present the macroscopic velocity and temperature
fields prevailing in the bank of cylinder, which leads us to the appropriate periodic
boundary conditions for the calculations of microscopic velocity and temperature
fields within a unit element, and eventually to the quasi-three-dimensional calculation
procedure. Using this inexpensive and yet efficient calculation procedure, the
important macroscopic parameters, such as permeability tensor, inertial tensor and
interfacial heat transfer coefficient will be determined by integrating the microscopic
results over a unit structure for various sets of the porosity, degree of anisotropy,
Reynolds number and macroscopic flow direction, such that the yaw effects on
these macroscopic parameters will be elucidated. Upon correlating these macroscopic
results, a useful set of explicit expressions will be established for the permeability
tensor, Forchheimer tensor and directional interfacial heat transfer coefficient, so
as to characterize flow and heat transfer through a bank of cylinders. No explicit
correlations of this kind to estimate the drag and heat transfer from the bank of
cylinders in yaw have ever been reported elsewhere.

2. Macroscopic velocity and temperature fields
Let us consider a macroscopically uniform flow through a bank of infinitely long

cylinders, as shown in figure 1. The cross-section of the cylinder may be rectangular
(as in a fin) or circular (as in a tube). The cylinder rows of the bank may be either
aligned (as in the figure) or staggered. Such bank arrangements are relevant to various
industrial applications such as cooling from extended fins and steam generation in
tubular (and shell-and-tube) heat exchangers.

In most bank configurations, flow and heat transfer conditions stabilize for a
cylinder beyond the first few rows such that the flow and heat transfer characteristics
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under periodically fully developed conditions are of particular interest. Thus, we shall
consider an infinitely large bank to investigate the periodically fully developed velocity
and temperature fields. The bank structure may be regarded as an anisotropic porous
medium, in which three principal axes (l, m, n) are mutually orthogonal. Referring to
these axes, the macroscopic velocity vector may be presented by

〈u〉 = |〈u〉| (cos αl + cos βm + cos γ n), (6)

where the Darcian (apparent) velocity 〈u〉(= φ〈u〉f ) is used in place of the intrinsic
velocity 〈u〉f . Note that the directional cosines of the macroscopic flow satisfy the
obvious relationship, namely,

cos2 α + cos2 β + cos2 γ = 1. (7a)

This relation may be rewritten equivalently using the projected angle α′ (i.e. crossflow
angle) as

cos α = sin γ cos α′, cos β = sin γ sin α′. (7b)

Under the macroscopically uniform velocity as given by (6), the volume averaged
momentum equation, (2), reduces to

−∂ 〈p〉f
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+ ρf bfij

|〈u〉|
)

〈uj 〉 , (8)

where

〈uk〉 〈uk〉 = |〈u〉|2 . (9)

Thus, the macroscopic momentum equation leads to the Forchheimer extended
Darcy’s law (Forchheimer 1901), generalized for the case of anisotropic porous media.

We shall assume that the outer surfaces of the cylinders are maintained at a constant
temperature. Then, the microscopic temperature field, when averaged spatially within
a local control volume, should lead to the macroscopic temperature field whose
gradient aligns with the macroscopic velocity vector in the s direction, such that the
volume averaged energy equation (3), under the macroscopically uniform velocity
field, reduces to

ρf cpf
|〈u〉| d 〈T 〉f

ds
= −hf af (〈T 〉f − 〈T 〉s

), (10)

where

ds = (cos αl + cosβm + cos γ n) · (i dx + j dy + k dz), (11)

where 〈T 〉f and 〈T 〉s denote the intrinsic averaged temperature of fluid and that
of the cylinders, respectively. Since the surface temperature of the cylinders 〈T 〉s is
constant, this equation naturally yields

〈T 〉f − 〈T 〉s = (〈T 〉f − 〈T 〉s)ref exp

(
− af hf

ρf cpf
|〈u〉| (s − sref)

)
. (12)

Note that the interfacial heat transfer coefficient hf is expected to be constant for the
periodically fully developed heat and fluid flow (Kuwahara et al. 2001), as in the case
of fully developed flow in a tube or channel with isothermal walls. This macroscopic
temperature distribution leads us to find the appropriate periodic boundary conditions
for the calculations at a pore scale, as will be described in the following chapter.
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Figure 2. Numerical model.

3. Governing equations and periodic boundary conditions
The microscopic governing equations for the fluid are given as follows:

∇ · u = 0, (13)

ρf (∇ · u) u = −∇p + µf ∇2u, (14)

ρf cpf
∇ · (uT ) = kf ∇2T . (15)

Consider a periodically fully developed flow through a periodic structure, as shown
in figure 2. Upon aligning Cartesian coordinates (x, y, z) with the principal axes of the
structure and taking their origin in the centre of the structural unit (−L/2 � x � L/2,
−H/2 � y � H/2, −M/2 � z � M/2), the boundary, compatibility and periodic
constraints for the microscopic velocity field are given by

on the solid walls:

u = 0, (16a)

T = Tw(=〈T 〉s), (16b)

on the periodic boundaries:

u|x = −L/2 = u|x=L/2 , (17a)

u|y = −H/2 = u|y=H/2 , (17b)

u|z = −M/2 = u|z=M/2 . (17c)

In order to establish the macroscopically uniform flow as given by (6), the following
mass flow rate constraints must be satisfied:∫ M/2
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Thus, at the periodically fully developed stage, the velocity distribution on one plane
of the structural unit must be identical to that on its adjacent plane.

On the other hand, the temperature profile on one plane is not identical but similar
to that on the adjacent plane, since the rods maintained at constant temperature
heat (or cool) the fluid as it passes over them. Kuwahara et al. (2001) have
uniquely determined the periodic thermal boundary conditions, which lead to the
macroscopic temperature distribution as given by (12) for the case of the two-
dimensional (cross) flows over the isothermal square cylinders. These periodic thermal
boundary conditions may easily be extended for the case of three-dimensional periodic
convective flow. Thus, we find that, for the macroscopic temperature distribution given
by (12) to prevail, the corresponding microscopic temperature field must satisfy the
following similarity conditions:

(T − Tw)|x=L/2 = τL cos α/(L cos α+H cosβ+M cos γ ) (T − Tw)|x = −L/2 , (19a)

(T − Tw)|y=H/2 = τH cos β/(L cos α+H cosβ+M cos γ ) (T − Tw)|y = −H/2 , (19b)

(T − Tw)|z=M/2 = τM cos γ /(L cos α+H cosβ+M cos γ ) (T − Tw)|z = −M/2 , (19c)

where

τ =
(T − Tw)|x=L/2,y=H/2,z=M/2

(T − Tw)|x = −L/2,y = −H/2,z = −M/2

. (20)

Our literature survey has revealed that no explicit periodic thermal boundary
conditions (such as given by (19)) have been reported for the case of three-periodic
boundaries in a three-dimensional space.

4. Quasi-three-dimensional numerical model
As a numerical model for small-scale heat transfer elements, we consider a

macroscopically uniform flow through a bank of square cylinders (or tubes) placed in
an anisotropic fashion (see figure 2). All square cylinders, which may be regarded as
heat sinks (or sources), are maintained at a constant temperature Tw , which is lower
(or higher) than the temperature of the flowing fluid.

Since the cylinders are infinitely long, the governing equations reduce to a quasi-
three-dimensional form, in consideration of the limiting case, namely, M → 0:
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where P is the coordinate along the wetted periphery, whereas n is the coordinate
normal to P pointing inward from the peripheral wall to fluid side. Afluid is the passage
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area of the fluid, and
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= −
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)
. (26)

In this way, all derivatives associated with z can be eliminated. Thus, only two-
dimensional storage is required to solve (21)–(24). (Note that both (23) and (24) may
be treated as two-dimensional scalar transport equations.)

5. Numerical calculation procedure
Equations (21), (22a) and (22b) along with the boundary and constraint conditions

given by (17a), (17b), (18a) and (18b) form a closed set of equations for determining
u, v and p. Therefore, the velocity and pressure fields of u, v and p can be established
independently of the remaining velocity component w. The velocity component w can
be determined later, solving (23) using the resulting u, v and p solutions along with
the mass flow constraint given by (18c). Having established the three-dimensional
velocity field, the temperature field may readily be established, solving (24) along with
(19a), (19b) and (25).

For this periodic structure, the representative elementary volume V of the unit can
be taken as L × H . Because of the periodicity of the model, only the unit as indicated
by dashed lines in the figure may be taken as a calculation domain.

Computations may be made using the dimensionless equations based on the
absolute value of the Darcian (apparent) velocity vector |〈u〉|, and the longitudinal
centre-to-centre distance L as reference scales. For carrying out a series of numerical
calculations, it may be convenient to use the Reynolds number based on L as
ReL = |〈u〉|L/νf , which can readily be translated into the Reynolds number based on
the size of the square rod D as follows:

ReD = |〈u〉|D/νf =

(
(1 − φ)

H

L

)1/2

ReL, (27)

where the porosity is given by

φ = 1 − (D2/HL). (28)

In this study, the Reynolds number is varied from 10−2 to 6 × 103, as in the
previous study for the crossflows (i.e. with γ = π/2). Here, both crossflow angle α′

and yaw angle γ are varied from 0 to π/2 with an increment π/36 to cover all
possible macroscopic flow directions in the three-dimensional space, such that entire
solution surfaces may be constructed over the domain 0 � α′ � π/2 and 0 � γ � π/2.
Moreover, the ratio H/L is set to 1, 3/2 and 2 to investigate the effects of the degree
of the anisotropy, whereas the ratio D/L is fixed to 1/2 for all calculations.
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(a)

(b)

Velocity vectors on z = const. plane w contours Isotherms

Figure 3. Comparison of two distinct three-dimensional calculation procedures (H/L = 1,
α′ = 45◦, γ = 45◦, ReL = 600, Pr= 1). (a) Results based on the full three-dimensional calculation
procedure; (b) on the quasi-three-dimensional calculation procedure.

The governing equations (21), (22a) and (22b) subject to the foregoing boundary
and compatibility conditions were solved numerically using the SIMPLE algorithm
proposed by Patankar & Spalding (1972). As the u and v velocity fields were
established, the remaining equations (23) and (24) were solved to find w and T .
Convergence was measured in terms of the maximum change in each variable during
an iteration. The maximum change allowed for the convergence check was set to
10−5, as the variables are normalized by appropriate references. The hybrid scheme
is adopted for the advection terms. Further details on this numerical procedure
can be found in Patankar (1980) and Nakayama, Chow & Sharma (1983). All
computations have been carried out for one structural unit L × H using non-uniform
grid arrangements with 91 × 91, after comparing the results against those obtained
with 181 × 181 for some selected cases, and confirming that the results are independent
of the grid system. All computations were performed using the computer system at
Shizuoka University Computer Center.

In order to check the validity of the present quasi-three-dimensional calculation
procedure, full three-dimensional calculations have been carried out using (13)–(15)
for some selected cases. In figure 3, the resulting velocity and temperature fields
for the case of H/L =1, α′ = 45◦, γ = 45◦, ReL = 600 and Pr =1 are compared with
those based on the quasi-three-dimensional calculation procedure. Excellent agreement
between the two sets of results can be seen, which verifies the accuracy and efficiency of
the proposed quasi-three-dimensional calculation procedure. The CPU time required
for convergence using the full three-dimensional calculation was roughly 3 h, which
is 6 times more than that using the quasi-three-dimensional calculation. This proves
the effectiveness of the quasi-three-dimensional calculation procedure.
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6. Determination of the permeability tensor
The gradient of the intrinsic average pressure may readily be evaluated using the

microscopic results as

−∂ 〈p〉f

∂s
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−(H−D)/2

(
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(
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)
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µf cos γ

(HL − D2)

∮
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∂w
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When the velocity (i.e. Reynolds number) is low, the proposed model equation (8)
reduces to Darcy’s law as
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For the orthotropic media, the permeability tensor may be modelled following Dullien
(1979) as

K−1
fij

= (li lj )/Kf1
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+ (ninj )/Kf3
, (31)

such that
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where
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|〈u〉| , cos β =
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|〈n〉| , cos γ =
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Thus, the directional permeability measured along the macroscopic flow direction s

is given by

1

Kfn

=
cos2 α

Kf1

+
cos2 β

Kf2

+
cos2 γ

Kf3

, (34)

such that

−∂ 〈p〉f

∂s
=

µf

Kfn

|〈u〉|, (35)

or, in dimensionless form, as

−∂ 〈p〉f

∂s

L2

µf |〈u〉| =
L2

Kfn

. (36)

Thus, the directional permeability Kfn
may readily be determined by reading the

intercept of the ordinate variable, as we plot −(∂〈p〉f /∂s)(L2/µf |〈u〉|) against ReL,
as done in the previous study on the crossflow case (Nakayama et al. 2002a, b). The
solution surfaces of the directional permeability are constructed using the numerical
values and presented in terms of L2/Kfn

against the projected angle α′ and the yaw
angle γ for the cases of H/L = 1 and 3/2 in figure 4(a). The solution surface changes
drastically as the ratio H/L departs from unity. Note that the effect of the projected
angle α′ on the directional permeability is totally absent for the arrangement H/L = 1.
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Figure 4. Solution surfaces for directional permeability. (a) Numerical experiments.
(b) Correlations.

H/L(φ) L2/Kf1
L2/Kf2

L2/Kf3
bf1

L bf2
L bbf1

L

1 (0.750) 76 76 41 0.2 0.2 8.2
3/2 (0.833) 16 55 13 0.1 0.6 3.2
2 (0.875) 7 42 6 0.05 0.8 1.2

Table 1. Coefficients for macroscopic pressure gradient.

The coefficients Kf1
, Kf2

and Kf3
in the proposed expression (34) may be determined

by fitting the numerical results against the solution surfaces based on (34). Such
solution surfaces generated by the proposed equation (34) are presented in figure 4(b)
for comparison. The numerical values of Kf1

, Kf2
and Kf3

determined in this manner
are given in table 1.The validity of the proposed equation (34) with the values given
in table 1 can be examined further by plotting L2/Kfn

as shown in figure 5 for the
case of γ = π/2, where the fluid flows perpendicularly to the rods. It is seen that the
numerical results closely follow the curves generated from (34).



150 A. Nakayama, F. Kuwahara and T. Hayashi

H/L = 1

3/2
2

0 10

20

20 30 40 50 60 70 80 90

40

60

80

100

120

α (deg.)

L
2 /

K
fn

L2

Kfn
= 76

L2

Kfn
= 16cos2 α + 55sin2 α

L2

Kfn
= 7cos2 α + 42sin2 α

Figure 5. Directional permeability at γ = π/2.

7. Determination of the Forchheimer tensor
When the velocity (i.e. Reynolds number) is sufficiently high, the Forchheimer term

describing the form drag predominates over the Darcy term such that

−∂〈p〉f

∂xi

=
(
µf K−1

fij
+ ρf bfij

|〈u〉|
)

〈uj 〉 ∼= ρf bfij
|〈u〉| 〈uj 〉 . (37)

Usually, the principal axes of the permeability tensor K−1
fij

do not coincide with

those of the Forchheimer tensor bfij
. For the orthotropic media in consideration,

however, the tensors bfij
should be symmetric and they must also satisfy the following

symmetric conditions:

∂bfn

∂α

∣∣∣∣
α=0,π/2

=
∂bfn

∂β

∣∣∣∣
β=0,π/2

=
∂bfn

∂γ

∣∣∣∣
γ=0,π/2

= 0, (38)

where

bfn
≡ bfij

〈ui〉 〈uj 〉
|〈u〉|2

(39)

is the directional Forchheimer coefficient measured along the macroscopic flow
direction s. One of the simplest functions that satisfies these conditions may be:

bfij
= bf1

(li lj ) + bf2
(mimj ) + bf3

(ninj ) + bbf1
cos α cos β((limj ) + (ljmi))

+ bbf2
cos β cos γ ((minj ) + (mjni)) + bbf3

cos γ cos α((nilj ) + (nj li)), (40)

which results in

bfn
= bf1

cos2 α + bf2
cos2 β + bf3

cos2 γ + 2bbf1
cos2 α cos2 β

+ 2bbf2
cos2 β cos2 γ + 2bbf3

cos2 γ cos2 α, (41)

such that

−∂ 〈p〉f

∂s
=

µf

Kfn

|〈u〉| + ρf bfn
|〈u〉|2 (42)
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Figure 6. Solution surfaces for directional Forchheimer coefficient. (a) Numerical
experiments. (b) Correlations.

or, in dimensionless form, as

−∂ 〈p〉f

∂s

L

ρf |〈u〉|2
=

L2

Kfn
ReL

+ bfn
L. (43)

Plotting the results of macroscopic pressure gradient in terms of −(∂〈p〉f /∂s) ×
(L/ρf |〈u〉|2) and reading the horizontal asymptotes, we can readily determine the
directional Forchheimer constant.

The numerical values of the directional Forchheimer constant for the cases of
H/L = 1 and 3/2 are shown in terms the solution surfaces of bfn

L in figure 6(a).
These figures clearly show that, for fixed γ , the directional Forchheimer constant
attains its peak around α′ = π/2, while, for fixed α′, it decreases monotonically from
γ = π/2 to 0.

From this observation, we find that the coefficients and bbf1
is non-zero while bf3

,
bbf2

and bbf3
in (41) should vanish for the bank of cylinders, such that

bfn
= bf1

cos2 α + bf2
cos2 β + 2bbf1

cos2 α cos2 β

=
(
bf1

cos2 α′ + bf2
sin2 α′ + 2bbf1

cos2 α′ sin2 α′ sin2 γ
)
sin2 γ. (44)
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Figure 7. Directional Forchheimer coefficient at γ = π/2.

The corresponding bfn
L surfaces based on the proposed expression (44) with the

values of bf1
bf2

and bbf1
as given in table 1 are presented in figure 6(b) for

comparison. Furthermore, the numerical results of the directional Forchheimer
constant obtained with γ = π/2 for H/L = 1, 3/2 and 2 are presented in figure 7 as a
function of the crossflow angle α(= α′). In the same figure, the solid curves generated
from the proposed equation (44) are presented to elucidate the validity of the proposed
expression. Note that, for this case of γ = π/2, the foregoing equation reduces to

bfn
= bf1

cos2 α + bf2
sin2 α + 2bbf1

cos2 α sin2 α. (45)

The numerical results for the cases H/L = 3/2 and 2 show two consecutive peaks,
whereas the model equation (45) yields only one peak (the first peak). The second peak
appears when the macroscopic flow angle α reaches roughly tan−1(H/L). Note that,
for the case of H/L = 1, this second peak coincides with the first one. Unfortunately,
the model equation is incapable of describing the second peak.

Zukauskas (1982) assembled the experimental data for the fully developed
pressure drop across the tube banks in both inline-square and staggered-triangle
arrangements, and presented a chart for the Euler number (i.e. the dimensionless
macroscopic pressure gradient). His inline-square arrangement corresponds to the
present arrangement with α = 0, γ = π/2 and L/D = 2. However, it is noted that, in
reality, the macroscopic flow direction rarely coincides with the principal axes, since
even small disturbances at a sufficiently high Reynolds number make the flow deviate
from the axis. Thus, it is understood that the chart provided by Zukauskas gives only
the average level of the pressure drop within a range of small α (say 0◦ <α < 5◦).
The dimensionless macroscopic pressure gradient −(∂〈p〉f /∂s)(L/ρf |〈u〉|2) for the
case of γ = π/2 and L/D = 2 is plotted against ReL in Figure 8, where the curves
generated from the model equation (43) with the numerical values taken from table 1
and figure 7 (note that bfn

L = 0.2 and 0.6, for α = 0◦ and 5◦, respectively) are
drawn together with the empirical chart provided by Zukauskas for the inline-square
arrangement. The agreement between these curves appears fairly good.
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8. Determination of interfacial heat transfer coefficient
According to Kuwahara et al. (2001), the interfacial heat transfer coefficient as

defined by equation (5) may be obtained by substituting the microscopic temperature
results into the following equation:

hf ≡

1

V

∫
Aint

kf ∇T · dA

(〈T 〉s − 〈T 〉f )
=

1

Afluid

∮
Pint

(
−kf

∂T

∂n

)
dP

(〈T 〉s − 〈T 〉f )
, (46)

where Aint is the total interface between the fluid and solid, while dA is its vector
element pointing outward from the fluid side to solid side. In figure 9, the heat transfer
results obtained at α = 0 and π/4 for the crossflows (i.e. γ = π/2) are presented in
terms of the interfacial Nusselt number NuL = hf L/kf against the Reynolds-number
ReL. The figure suggests that the lower- and higher Reynolds-number data follow
two distinct limiting lines for the case of non-zero α, namely, α = π/4. The lower-
Reynolds number data stay constant for the given array and flow angle, whereas the
high Reynolds-number data vary in proportion to Re0.6

L .
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Another series of computations changing the Prandtl number, conducted following
Kuwahara et al. (2001), revealed that the exponents associated with the Reynolds and
Prandtl numbers are the same as those Wakao & Kaguei (1982) observed by collecting
and scrutinizing reliable experimental data on interfacial convective heat transfer
coefficients in packed beds. The similarity, albeit the difference in the Reynolds-
number dependence, between the Nusselt number NuL and the macroscopic pressure
gradient as given by (42) is noteworthy, which prompts us to model the directional
Nusselt number as follows:

NuL ≡ hf L

k
= cf + df Re0.6

L Pr1/3
f . (47)

The experimental correlation proposed by Zukauskas (1987) for the heat transfer
from the circular tubes in staggered banks is compared with the present results
obtained for the case of α = π/4, γ = π/2 and H/L = 1. (Note Nuf

∼= NuL/2 and
Ref

∼= ReL in (39) of Zukauskas since D/L = 1/2.) The present results follow closely
along the experimental correlation of Zukauskas with increasing Reynolds number.
Grimson (1937) carried out an exhaustive experiment to investigate heat transfer from
tube rows of a bank in both staggered and aligned arrangements with respect to the
direction of the macroscopic flow. His case, in which the ratio of the transverse pitch
to tube diameter and that of the longitudinal pitch to tube diameter are 3 and 1.5,
respectively, gives a configuration close to the present orthogonal configuration with
α = π/4, γ = π/2 and H/L = 1. Thus, the experimental correlation established by
Grimson for the case is also presented in the figure, which agrees very well with the
present numerical results. These correlations are believed to hold for a comparatively
wide Reynolds number range, covering from a predominantly laminar flow regime to
turbulent flow regime.

Following a procedure similar to that adopted for determining the directional
permeability, the coefficient cf ≡ NuL|ReL→0

for each macroscopic flow angle is
evaluated and plotted in terms of the solution surfaces in figures 10(a), using the
low-Reynolds-number data. It is noted that the effect of the projected angle α′ on the
interfacial heat transfer coefficient is totally absent for the arrangement H/L = 1.

The similarity between the solution surfaces of cf and those of L2/Kfn
is obvious,

which leads us to introduce a functional form as follows:

cf =
(
c

nc

f1
cos2 α + c

nc

f2
cos2 β + c

nc

f3
cos2 γ

)1/nc
, (48)

such that cf reduces to cf1
, cf2

and cf3
for α = 0, β = 0 and γ = 0, respectively, as it

should.
Careful examination of the numerical results over the whole domain within 0 �

α′ � π/2 and 0 � γ � π/2 suggests that nc is close to minus one, which leads us to a
harmonic mean expression as

1

cf

=
cos2 α

cf1

+
cos2 β

cf2

+
cos2 γ

cf3

. (49)

The values of cf1
, cf2

and cf3
listed in table 2 have been determined by fitting the nu-

merical results against the foregoing equation. The resulting surfaces based on the
proposed expression (49) are presented in figure 10(b) for their comparison with the
surfaces based on the numerical experiments shown in figure 10(a). Furthermore,
figure 11 shows the numerical results of cf obtained at γ = π/2 for the three
distinct arrangements, namely, H/L = 1, 3/2 and 2. The solid curves in the figure are
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Figure 10. Solution surfaces for directional heat transfer coefficient at small Reynolds
number. (a) Numerical experiments. (b) Correlations.

H/L(φ) cf1
cf2

cf3
nc df1

= df2
nd

1 (0.750) 11 11 8.6 −1.0 0.90 4.5
3/2 (0.833) 4.8 14 5.2 −1.0 0.77 4.5
2 (0.875) 3.2 16 3.6 −1.0 0.67 4.5

Table 2. Coefficients for directional Nusselt number.

generated from the proposed equation (49) with the values of cf1
and cf2

as given in
table 2.

The second coefficient df may be determined using the data NuL/Re0.6
L Pr1/3

f in the
high-Reynolds-number range. The resulting solution surfaces of df are presented in
figure 12 for H/L = 1 and 3/2. Unlike the Forchheimer coefficient bfn

, the coefficient
df stays roughly constant for a fixed yaw angle γ .

Somewhat more careful observation on the solution surfaces reveals that the
coefficient df drops abruptly as the projected angle α′ reaches close to either 0
or π/2 (in which the fluid flows along the principal axis of the structure). However, as
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already pointed out, it is quite unlikely to have the macroscopic flow align perfectly
with the principal axes. Thus, we may assume that df is the function of the yaw angle
γ alone, namely, df = df (γ ). It is interesting to note that df = df (γ ) is consistent
with the idea of the effective velocity ueff = |〈u〉| sin γ used in hot-wire anemometry.
Thus, we may model df as

df =
(
d

nd

f1
sin2 γ + d

nd

f3
cos2 γ

)1/nd

(50)

A careful observation on the solution surfaces leads us to df3
∼= 0, and also reveals the

values of df1
and nd as given in table 2. Thus, we propose the following expression:

NuL =
(
c

nc

f1
cos2 α + c

nc

f2
cos2 β + c

nc

f3
cos2 γ

)1/nc
+ df1

sin2/nd γRe0.6
L P r

1/3
f (51a)

or

NuD = 1
2

(
c

nc

f1
cos2 α + c

nc

f2
cos2 β + c

nc

f3
cos2 γ

)1/nc
+

df1

20.4
sin2/nd γRe0.6

D P r
1/3
f . (51b)

Note that the exponents nc = −1 and nd = 9/2 irrespective of the value of H/L, while
the coefficients cf1

, cf2
, cf3

and df1
depend on that particular geometrical configuration.

Zukauskas (1982) investigated the effect of the yaw angle on the interfacial heat
transfer rate. He varied the yaw angle γ for both staggered and aligned arrangements,
and compared the corresponding heat transfer rates for the same Reynolds number.
He pointed out that the data when normalized by the value obtained at γ = π/2 for
all staggered and inline arrangements, namely, NuD/NuD|γ=π/2, can be approximated
by a single curve irrespective of the Reynolds number. His data for both staggered
and inline arrangements are plotted in figure 13 together with the expression based
on the model equation (51b), namely,

NuD

NuD|γ=π/2

∼= sin2/nd γ = sin4/9 γ (52)

for the case of sufficiently high Reynolds number. The agreement between the
experimental data and the curve based on (52) is fairly good, which indicates the
validity of the model equation (51b). It should also be noted that the staggered
arrangement corresponds to the case of α′ = π/4 while the inline arrangement
corresponds to the case in which α′ is close to zero (but α′ 
= 0 since the macroscopic
flow direction never coincides with the principal axis of the structure). Thus, these
experimental data substantiate our finding based on the numerical experiment, namely,
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that the multiplicative constant for the interfacial Nusselt number df stays virtually
constant (irrespective of α′) for a fixed yaw angle, as illustrated by the solution
surfaces in figure 12.

9. Conclusions
A quasi-three-dimensional calculation procedure has been proposed to investigate

three-dimensional heat and fluid flow through a bank of cylinders in yaw, which
represents a numerical model for manmade structures such as plate fin heat
exchangers. Only one structural unit was taken as a calculation domain, noting the
periodicity of the structure. This inexpensive and yet efficient numerical calculation
procedure based on one structural unit along with periodic boundary conditions was
exploited to conduct extensive three-dimensional calculations for a number of sets of
the porosity, degree of anisotropy, Reynolds number, Prandtl number and macroscopic
flow direction.The numerical results, thus obtained at the pore level, were integrated
over a structural unit to determine the permeability tensor, Forchheimer tensor and
directional interfacial heat transfer coefficient, so as to elucidate the effects of yaw
angle on these macroscopic flow and heat transfer characteristics. Upon examing these
numerical experimental data, a useful set of explicit expressions for the permeability
tensor, Forchheimer tensor and directional interfacial heat transfer coefficient have
been establised for the first time, such that we can easily evaluate the pressure drop
and heat transfer rate from the bank of cylinders in yaw. The systematic modelling
procedure proposed in this study can be used to conduct subscale modellings of
manmade structures required in the possible applications of a volume averaging
theory to investigate flow and heat transfer within complex heat and fluid flow
equipment consisting of small elements.
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